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Weis-Fogh (1973) proposed a new mechanism of lift generation of fundamental 
interest. Surprisingly, it could work even in inviscid two-dimensional motions 
starting from rest, when Kelvin’s theorem states that the total circulation round 
a body must vanish, but does not exclude the possibility that if the body breaks 
into two pieces then there may be equal and opposite circulations round them, 
each suitable for generating the lift required in the pieces’ subsequent motions ! 
The ‘fling ’ of two insect wings of chord c (figure 1) turning with angular velocity 
!2 generates irrotational motions associated with the sucking of air into the 
opening gap which are calculated in $ 2 as involving circulations - 0.69Qc2 and 
+ 0.69!2c2 around the wings when their trailing edges, which are stagnation 
points of those irrotational motions, break apart (position (f)). Viscous modifica- 
tions to  this irrotational flow pattern by shedding of vorticity at the boundary 
generate ( 3  3) a leading-edge separation bubble, and tend to increase slightly the 
total bound vorticity. Its role in a three-dimensional picture of the Weis-Fogh 
mechanism of lift generation, involving formation of trailing vortices at the wing 
tips, and including the case of a hovering insect like Encarsia formosa moving 
those tips in circular paths, is investigated in $4 .  The paper ends with the com- 
ment that the far flow field of such very small hovering insects should take the 
form of the exact solution (Landau 1944; Squire 1951) of the Navier-Stokes 
equations for the effect of a concentrated force (the weight rng of the animal) 
acting on a fluid of kinematic viscosity v and density p, whenever the ratio mg/pv2 
is small enough for that jet-type induced motion to be stable. 

1. Introduction 
Weis-Fogh (1973), in his analysis of the hovering motions of the chalcid wasp 

Encarsia formosa (an economically important parasite used in the biological 
control of greenhouse aphids), concluded that its performance is markedly 
superior to that of most hovering animals as a result of lift generagion by a 
mechanism of considerable fundamental interest not previously studied by aero- 
dynamicists. Normal hovering animals beat their wings back and forth in a 
horizontal plane, preceding each lift-beat with a wing rotation that allows always 
the same leading edge to move forwards at  an angle of incidence appropriate to 
a relatively high lift coefficient. Building up that lift coefficient is, however, 
delayed by the Wagner effect: that is, the time required for vorticity shedding 
from the trailing edge to generate the necessary circulation around the wing 
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FIGURE 1. Sequence of motions of the wings of Encarsia forrnosa, shown in section by 
a mid-span vertical plane on the dorsal side of the insect’s erect body. In positions (a) and 
(b )  the wings are momentarily at rest after the ‘clap’; positions ( b ) - ( f )  exhibit the ‘fling’ 
motion; the wings break apart at ( f )  and in (f), (9) and (h)  exhibit normal flight movement. 

(Wagner 1925). E. formosa precedes each beat with a special movement (the 
‘ clap and fling ’) which, as Weis-Pogh argues, may cause the necessary circulation 
to be generated immediately and avoid any delay in the build-up of maximum 
lift. High-speed photography was needed to observe the details of these move- 
ments, at  a wing-beat frequency around 400Hz. 

The Weis-Fogh mechanism, like the Wagner effect, can be described in terms 
of a purely two-dimensional flow: a description reasonably appropriate as each 
of the animal‘s wings has an aspect ratio around 5. This paper gives a quantita- 
tive analysis of the Weis-Fogh mechanism in terms of two-dimensional flow 
theory, but also offers qualitative comments on three-dimensional aspects of the 
flow patterns in the concluding section, $4. 

A particularly remarkable feature of the mechanism is that Weis-Fogh (1973) 
was able to describe it approximately in terms of a purely inviscid two- 
dimensional flow. This flow is calculated in $ 2 below prior to the investigation of 
viscous-flow corrections in $ 3 .  It is surprising that a fundamentally new 
mechanism of lift generation in inviscid two-dimensional flow should be dis- 
covered six decades after the work of Prandtl, Zhukovski, Kutta and 
Lanchester. 

The Weis-Fogh mechanism works, furthermore, for a fluid of zero viscosity: 
not simply in the limit of vanishing viscosity when thin Prandtl boundary layers 
shed Lanchester vortices at sharp trailing edges where the Kutta-Zhukovski 
condition is satisfied. To be sure, for inviscid two-dimensional flow the doctrines 
of Helmholtz, Stokes and Kelvin tell us that a body starting to move in fluid at 
rest retains always the same zero circulation of fluid around it, preventing the 
generation of lift on the body (or of any forces except those associated with virtual- 
mass effects). Those doctrines do not, however, rule out the possibility that when 
the body breaks into two pieces there may be equal and opposite circulations 
round them, each suitable for generating the lift required in the pieces’ subsequent 
motions ! 

Figure 1 illustrates in terms of two-dimensional flow the sequence of wing 
movements comprising the Weis-Fogh mechanism of lift generation. We view 
‘in elevation’ successive positions taken up by sections A B  and CD of the two 
wings in a mid-span vertical plane. The body of the hovering insect is erect with 
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the head uppermost, and the vertical plane of figure 1 is to the dorsal (back) side 
of it, halfway between the body itself and the wing tips. 

The last three positions (f), (9)  and (h) in figure 1 show a motion characteristic 
of normal hovering flight with both wings moving horizontally at  a positive angle 
of incidence. It will be explained why this motion is enabled by the preceding 
‘ clap and fling ’ movements to generate maximum lift from the outset; before 
describing that, however, we note that the normal horizontal motion of the wings 
is shown as a rectilinear motion in figures 1 (f), (g) and (h),  although the wings 
really move in a horizontal circle around the erect body. Positions showing the 
horizontal motion at the end of figure 1 proceeding considerably further could 
properly be depicted only if figure 1 were regarded as a section not by a vertical 
plane but by a cylindrical surface with the insect’s vertical body as axis. 

At a certain phase in each wing-beat cycle the insect performs the ‘clap ’: its 
wings are ‘ clapped together behind its back ’ into the contiguous situation shown 
in the first two positions of figure 1, with leading edges vertically above the 
trailing edges. We may regard position (b)  with the surrounding fluid undisturbed 
as the initial condition for the operation of the Weis-Fogh mechanism, on the 
grounds that residual eddy motions generated in the clapping process should 
have been blown far enough away from the wings by then to be uninfluential. 

The sequence from figure 1 (b)-(g), then, shows two wings AB and CD which 
in the first four positions are touching (with the points A and C coinciding) to  
form effectively a single body. Figure 1 ( f )  shows them breaking apart, while they 
are fully separate in figure 1 (9) .  The Weis-Fogh mechanism depends on the idea 
that the rotary movements of AB about A and of CD about C (that is, the ‘fling’) 
depicted in positions ( b ) - ( f )  generate a fluid motion which a t  the moment of 
figure 1 (f) when the wings break apart involves substantial equal and opposite 
circulations, in the negative sense around AB and in the positive sense around CD, 
of magnitudes close to those required for generating maximum lift at once in the 
subsequent horizontal motions. This is the idea that is quantitatively evaluated 
on inviscid theory in 8 2, while modifications due to viscous effects are estimated 
in 8 3. The necessity of such viscous considerations is particularly evident from 
the low Reynolds numbers involved: around 30 based on a wing chord of 0.22 mm 
and a leading-edge velocity of 2.2 ms-1. Finally some considerations regarding 
the idea’s application to the fully three-dimensional motions of the insect’s wings 
are sketched in 3 4. 

2. Two-dimensional inviscid-flow theory 
In  the two-dimensional model of the ‘fling’ process depicted in figure 2,  the 

broken line EF represents a plane of symmetry while the lines AB and CD each 
have length c,  the ‘chord ’ of the wings which they represent. They each make an 
angle a with EP and the ‘fling ’ process is one in which a increases from zero, with 
the points A and C stationary and coincident, until when a takes a value a0 
(around Qn) the wings break apart. 

The flow field at  each instant of the fling process is, according to inviscid-flow 
theory, simply the irrotational flow associated with the instantaneous angular 

1-2 
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FIGURE 2. Two-dimensional model of the ‘fling’ process. The points A and C are stationary 
and coincident and the wings AB and CD rotate about them with angular velocity 
s1 = du/dt. The whole motion is symmetrical about the line Eli’. 

velocity s1 = da/dt of rotation of the wings. In  the present section we calculate 
this flow, but may note in advance two features of it: there is a stagnation point 
(zero fluid velocity) on both sides of the corner, and there is a circulation 

r = w g ( a )  (1) 

around each wing (in the negative sense around AB and in the positive sense 
around CD),  where g(a)  is a computed function of a. 

It follows that if the wings break apart when a = a. and s1 = Q0 the flow field, 
not involving any motion at the corner where the break occurs, remains un- 
changed to a close approximation. The circulation around each wing is then 
Qoc2g(a0) and on two-dimensional inviscid-flow theory must continue to take 
that value in the subsequent motion. According to unsteady aerofoil theory this 
permits substantial lifts on both wings without the need for any vortex shedding. 
We postpone till 6 3 considerations of possible effects modifying this irrotational- 
flow description, resulting from vortex shedding whether from the leading edges 
during the fling or from the trailing edges after they break apart, and concentrate 
here on determining g(a). 

In  the irrotational flow associated with the motion of figure 2, the line of 
symmetry EF is a streamline and we investigate the flow to theleft of it due to the 
motion of AB and calculate the resulting circulation I?. The investigation is 
carried out (figure 3) in the upper half complex x plane cut from the origin A to 
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FIGURE 3. Illustrating the complex planes used: the z plane (a) ,  representing the left-hand 
half of the flow field of figure 2 turned through 90°, is mapped conformally into the upper 
half 2 plane (b) .  

the point B, where z = c eia, with EF the real axis. We distinguish the two corners 
a t  A between the wing and the line of symmetry with the designations A ,  and A,. 

A Schwarz-Christoffel conformal mapping from the cut upper half z plane to 
the uncut upper half 2 plane (figure 3) is defined by 

with the term in brackets given argument zero at 2 = co. The points at infinity 
correspond; the points A,  and A ,  are mapped into 2 = - 1 and + 1 respectively, 
while the need for their positions in the z plane to coincide requires that the 
integral of (2) from 2 = - 1 to 2 = + 1 vanishes, giving 

a = 1 - (2&/77) (3) 

as the value of 2 at the point B. The quantity ze-ia on the wing AB, which 
represents distance from the origin A ,  may be written as 

and the condition that it takes the value c at  B (where 2 = a) determines K as 

K = c&&, where fmag = f ( a )  ( 5 )  

is the maximum off(2) for - 1 < 2 < 1. 
The stream function $, which is the imaginary part of the complex potential w, 

can be taken as zero on the streamlines EA, and A ,  F .  It is non-zero, however, on 
the wing AB, along which the normal velocity is SZ times the distance ze-*Or 
from A .  The rate of change of $ with this distance is minus this normal velocity, 
giving 

as the boundary condition on both A,B and A,B. 

Im (w) = $ = - @(ze-*a)2 (6) 
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FIGURE 4. The coefficient g(a) in equation (1) for the circulation I? around AB,  as a function 
of the semi-angle a between the wings given by equation (lo),  with f and f,, defined in 
(4) and (5 ) .  The broken line represents the approximate formula (12) for small a; a similar 
approximate form for small 7r - a has been plotted, although it is probably of no practical 
interest. 

The corresponding boundary conditions in the 2 plane state that for real 2 

- @ u P f 2 ( 2 )  ( -  1 < 2 < I), 
0 (otherwise). 

Im(w) = 

The complex potential w(2)  satisfying these boundary conditions is 

( 7 )  

Now the circulation I’ round the wing AB in the negative sense is the change in 
velocity potential $ (the real part of the complex potential w) as we move once 
round AB from A, to A,, which in the 2 plane is from - I to -I- 1. Hence 

r = ( ~ ~ 2 / ~ ) j ~  ( i - t y p ( t ) d t ,  
- 1  

which with (5) specifies the coefficient g(a )  in (1) as 

(9) 

This function is easily computed, with results shown in figure 4. 
An interesting feature of g(a) ,  not unexpected from its expression (10) as a sort 

of ‘weighted mean ’, is the flat nature of its graph in the central half of the interval 
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of possible values of a: thus, g(a) lies between 0.64 and 0.77 when in < a < 2;. 
(so thatf(t) attains its maximum between - 8 and 8) .  In  fact 0.64 < g(a)  < 0.77 
whenever the angle 2a between the wings is obtuse, and g(a) is varying particu- 
larly slowly once that angle has risen to the value 120” (a  = 4;. with g(a) = 0-69) 
at  which the separation of the wings is observed. 

This is significant not only because it indicates that the circulation g(ao) Q0c2 
is insensitive to the exact value a. of a when the wings break apart, but also 
because it suggests that the pressure difference across the gap is negligible. This 
difference in pressure between the stagnation points A ,  and A ,  is the difference 
in values of - pa$/at, which is 

since I? is the difference in the values of $ at A ,  and A,. On the flat part of figure 4 
this quantity should be small. 

It may be of interest to note that for very small values of a the quantity g(a )  
becomes large, approximately like 

- p arpt (11) 

1 1 ; .  
4a 2;. a’ 

g(a) - -+-log- 

of which the graph is shown as a broken line in figure 4. This behaviour can be 
deduced analytically from ( 10); alternatively, its physical significance can be 
seen as follows. 

At the start of the ‘fling’ process, the flow field is dominated by the inrush of 
air to fill the opening gap between the wings. The volume of air per unit span a t  
a distance less than Y from A is ar2 and the rate of increase of this, namely 

Qr2, (13) 

must be achieved (figure 5) by inflow across an arc of small length 2ar at a mean 
speed Qr/2a. The integral of this from 0 to c is Qc2/4a, which explains the leading 
term in (12) as the large contribution to circulation made by the integral of 
velocity over the region between the wings where the inflow (13) is spread over 
a narrow arc.? Outside the region the ‘sink’ flow into the opening predominates, 
with an inflow per unit span Qc2 coming equally into BD from all directions. In 
a distance c from A t o  B the area per unit span over which this inflow is spread 
drops from 2nc to 2ac (figure 5) ,  and the corresponding change 

(sZc2/2;.) log (;./a) 

in velocity potential accounts for the second term in (12). 
Strictly speaking, these questions of what is the flow and the consequent 

circulation for a small are not important for an inviscid-flow model, on which the 
circulation at  a later instant when a = a. is determined only by the motion of the 
boundary and resulting flow at that instant. They have been mentioned here, 
however, because the modifications by viscous effects studied in $ 3  give the 

t For the energetics of the ‘fling’ process, see Weis-Fogh (1973): the essential point is 
that the combination of elastic system and musculature involved is adapted to operations 
in which most of the energy expenditure precedes most of the displacement, as is required 
for small 01 (though hairs on the wings prevent 01 from becoming exactly zero) to generate 
the velocity distribution RrlZa. 
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/ Sink motion \ 

FIGURE 5. The initial stage of the ‘fling’ process. The area ar2 of a sector of radius r and 
semi-angle a: increases at a rate fir2, which must be balanced by inflow across an arc of 
length 2ar at a mean speed fir/2a. The external motion, on the other hand, is that due to 
a sink of strength fic2 representing the inflow into BD. 

ncz/2nc 

model ‘memory’: in fact, it is modified by a distribution of vorticity that has 
been convected and diffused since first being shed from the boundary at a rate 
depending on how the boundary was moving the fluid at  that time. 

3. Modifications due to viscous effects 
The inviscid-flow theory of $ 2  predicts that, after the wings break apart, the 

fluid continues to move irrotationally (that is, without vorticity) but with circu- 
lations Qoc2g(ao) around AB and CD in the negative and positive senses respec- 
tively. In  this section we consider modifications to this conclusion, still on a two- 
dimensional model, due to shedding of vorticity from the wings both before and 
after they break apart. 

If vorticity is shed from the boundary in a motion like that depicted in figure 2, 
the total flow field is the sum of (i) the irrotational flow (calculated in 5 2) com- 
patible with the boundary’s motion normal to itself, and (ii) the flow field that 
the vorticity distribution would induce if the boundary were at rest. The modi- 
fying flow field (ii) can often be calculated by the method of images: in fact, when 
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the vorticity distribution is mapped into the Z plane of figure 3 with an infinite 
straight-line boundary, the associated flow field is that of the vorticity distribu- 
tion plus that of a mirror-image distribution of equal strength and opposite sign. 

The vorticity distribution in a two-dimensional flow is determined by the 
principles (i) that vorticity is subject to convection by the local fluid velocity 
and diffusion with diffusivity Y (the kinematic viscosity), and (ii) that the 
boundary is a source of vorticity (Lighthill 1963), which appears from it at the 
rate required to maintain the no-slip condition. In  the problem of figure 2, for 
example, flow changes occurring in a short time interval leave the boundary 
condition on normal velocity undisturbed: the irrotational component changes 
a t  once to that associated with the new attitude a and angular velocity Q of the 
boundary, while the previously existing vorticity distribution adopts after con- 
vection and diffusion a new configuration but, in combination with its image 
system, continues to make no alteration in the normal velocity at the boundary. 
All these changes, by contrast, perturb the tangential velocity at the boundary, 
so that the no-slip condition can be maintained only if new vorticity appears a t  
the boundary in the form of a vortex sheet of strength equal to that perturbed 
tangential velocity: a vortex sheet which itself begins a t  once to be convected 
and diffused. 

In  certain circumstances its convection may be essentially tangential so that 
all the vorticity generated remains close to the boundary, filling after time t 
a boundary layer with thickness proportional to a diffusion length (vt)t.  This is 
particularly the case wherever the irrotational component of flow involves 
accelerating motions close to the boundary, so that the source of vorticity must 
always be of one sign: that which permits the slip across the boundary layer to 
increase. For example, on the lower surfaces of the wings in figure 2, such an 
accelerating motion is found. Initially, when a! is small (figure 5), it is an accele- 
rating ‘sink’ flow into the opening orifice BD. For all a, however, the velocity 
calculated by the irrotational-flow theory of 5 2 increases along the lower surface 
of each wing even for fixed angular velocity Q, while the fluid’s acceleration is 
even more pronounced when !2 is increasing with time. 

This is important because, when a has risen to values around Jp where the 
wings break apart, about half of the total circulation Qc2g(a) predicted in $2 
(with g(a) in the ‘flat’ region of figure 4) for the circulation round each wing comes 
from the underside. This part, as a contribution to the circulation round the wing 
and the attached boundary layer, is not significantly modified, then, by viscous 
effects. 

By contrast, wherever the irrotational component of flow involves decelerating 
motions close to the boundary, the vorticity required to allow its slip over the 
boundary decreases, which demands the generation at the boundary of vorticity 
of opposite sign. When that becomes sufficient to counteract diffusion of previ- 
ously existing vorticity towards the surface, a reversed flow results near the 
surface which combines with forward flow in the region of accelerating motions 
to cause movement of fluid away from the surface. Such flow separation may 
convect vorticity to a much greater distance from the surface in a given time t 
than pure diffusion could. 
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Irrotational motions involving substantial flows around a wing leading edge 
that is sharp or has relatively small radius of curvature are classic cases where 
the tangential velocity accelerates up to the edge and then decelerates, commonly 
leading to  reversed flow beyond the edge. Then the flow may separate from the 
edge, the associated convection of vorticity being known as leading-edge vortex 
shedding. Cases exist when that vorticity moves far away from the surface, 
facilitating a complete flow separation with fluid on rounding the leading edge 
moving far from the surface (as in a stalled aerofoil flow). In  other cases it is 
forced back onto the upper surface, enclosing a ‘ leading-edge bubble ’ of separated 
flow of relatively modest dimensions. This can happen in steady flow, and 
happens still more commonly in starting flows generated by a wing’s movement 
over only a moderate distance compared with its chord. 

A leading-edge bubble is particularly to be expected in the flow of figure 2. 
At the leading edge of each wing the tangential velocity rises to a maximum and 
then sharply decelerates, making flow separation practically certain. In the early 
phase depicted in figure 5, however, the equation of continuity demands that the 
total fluid motion be sucked into the opening gap, carrying with it the vorticity. 
This convective effect greatly limits the potentiality for shed vorticity to move 
far from the boundary. At the same time diffusive effects in that opening region 
may reduce the strength of the vorticity of opposite sign to the right and left of 
the line of symmetry by diffusive flux across it. 

When the wings break apart, the leading edges have each travelled about one 
chord length through the fluid, and vorticity shed in the early stages has been 
sucked into the opening gap, some of this being destroyed by diffusive action. 
This makes it probable that most of the shed vorticity which remains is confined 
to a bubble-shaped region attached to the leading edge, enclosing a relatively 
short region of reversed flow. The low Reynolds number (around 30) of the 
motions of Encarsia forrnosa would certainly help to promote bubble reattach- 
ment by increasing diffusive effects: at  high Reynolds number it is known that 
laminar-separation bubbles from the leading edges of aerofoils are particularly 
prone to reattachment when transition to turbulence takes place in the separated 
boundary layer, essentially because that transition enhances diffusion; the 
analogous enhancement of diffusion at Reynolds numbers around 30 can be 
expected to have a similar effect. 

Such a leading-edge bubble would not impede the operation of the Weis-Pogh 
mechanism. When the wings move apart as in figures 1 ( f ) ,  (9 )  and (h) the im- 
mediate development of a high lift coefficient would indeed be facilitated by the 
effective rounding of the leading edge to a ‘good aerofoil section’ provided by 
the bubble. 

Furthermore, the circulation around the effective aerofoil consisting of wing 
and bubble would be enhanced, if anything, be the bubble’s presence. Figure 6 
sketches possible shapes (whose accuracy or otherwise is not important) for the 
vortex sheet round the bubble in both the z plane and the Z plane of figure 3. In 
the Z plane the equal and opposite image vorticity in the straight-line boundary 
is also shown: the complex potential w in that plane is equal to the irrotational- 
flow value (8) plus the potentials of the vorticity distribution and its image 
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FIGURE 6. Possible shape of a vortex sheet enclosing a leading-edge bubble in (a )  the 
z plane and ( b )  the 2 plane (compare figure 3).  In the 2 plane the position suitable for a line 
vortex used to estimate its effect on I? is also shown, together with the image position. 

distribution. The circulation round the wing and the bubble from A ,  to A, is the 
change in velocity potential q5 from 2 = - 1 to  Z = + 1 round a path lying above 
all those vortices, and is increased above its irrotational-flow value (1) by a 
slightly larger contribution from the negative vorticity in the upper half-plane 
than from the positive image vorticity in the lower half-plane. 

To see that this effect, if present, would however be small, we may consider the 
influence of a single vortex of strength - K at the point Z = 1 +im (figure 6). 
The irrotational-flow velocity in the 2 plane has in - 1 < Z < I an average value 
gr since I' is its integral from - 1 to 1, so that the postulated vortex at 2 = E + im 
and its image at  Z = 1 - im are of the right order of magnitude to reverse the flow 
if Klnm = 4I'. But the additional circulation round a contour going from - 1 to 
+ 1 above the vortex is 

7T [tan-' ( 3E) + tan-' (+J] , 

which is of order of magnitude 

Similar conclusions result from consideration of vorticity distributed in a sheet 
around a bubble. They are analogous to the classical prediction of a slight 
enhancement of circulation round a two-dimensional aerofoil in steady flow at 
given angle of incidence due to increased aerofoil thickness; and they might like 
that be cancelled out in practice by other effects. 

We also consider briefly any vortex shedding after the wings move apart. Note 
first that such trailing-edge vortex shedding as results in unsteady aerofoil theory 
from pressure inequalities at the trailing edge is not expected initially in the flow 
of figure 1 (f), where the pressures on the two sides of the opening gap are 
approximately equal. 
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Initially, then, the flow over the upper surface of the wing AB can continue 
along lines depicted in figure 6 (a)  as an ordinary aerofoil flow with a leading-edge 
bubble. Continued reattachment of the upper-surface flow is influenced favour- 
ably by translational acceleration of the wing surface. Admittedly, on the lower 
surface, the cessation of wing rotation and adoption of a translational mode of 
motion imply a change in sign of the surface’s tangential motion relative to the 
external fluid. A new boundary layer typical of flow over the lower surface of an 
aerofoil must at  once be formed. Its positive vorticity must more than overcome 
the already existing negative vorticity in the boundary layer associated with the 
external flow calculated in tj 2, to such an extent that the total vorticity takes the 
positive value that permits the required slip between the lower surface and the 
external fluid. Actually, no special difficulties arise in boundary layers associated 
with solid surfaces whose tangential motion relative to the fluid changes sign in 
this way (compare the well-known Stokes layers involving periodic changes in 
sign): the diffusion helps to produce gradually a cancelling of negative and 
positive vorticity but at  each instant it is in any case only the total vorticity in 
the layer which significantly influences the external flow. 

As the translational motion proceeds, say with velocity U ,  the circulation I’ 
may change owing to gradual vortex shedding at  the trailing edge, but it will stay 
constant if I’ = iUcC,, where C, is the value of the lift coefficient for wing motion 
through the ambient fluid at  the angle of incidence in question? with zero net 
vortex shedding (the viscous-flow generalization of the Kutta-Zhukovski condi- 
tion). This determines a value of U such that the full steady-flow lift per unit span 

p ur = i p  U%CL (16) 

can be realized from the outset. This possible implication, a total absence of the 
Wagner effect, is further explored in 5 4. 

4. Conclusion 
Weis-Fogh (1973) described the zoological implications of his mechanism of 

lift generation regarding which aerodynamical details have been worked out in 
the present paper. We may conclude with a broader aerodynamic perspective 
of its method of working. 

In  terms of a purely two-dimensional flow (figure 1) the ‘fling ’ allows the wings 
immediately after they break apart to experience something close to maximum 
lift, essentially because in the language of the Prandtl-Wagner theory each acts 
as a ‘starting vortex’ for the other: one of full strength, indeed, rather than the 
half strength of Wagner’s classical starting vortex (Wagner 1925). The concentra- 
tion of fluid vorticity into two ‘bound vortices’ (that is, the vorticity attached 
to a wing in boundary layers, leading-edge bubbles, etc., all adding up to the 
circulation round it) implies that the fluid impulse downwards, which is the 
moment of the distribution of horizontal vorticity, has a constant rate of increase, 
generating by reaction a constant lift. 

t The effective angle of incidence is, however, less than the geometrical angle of each 
wing to the horizontal because (34) each wing moves in the ‘downwash’ from the other. 
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FIGUBE 7. Schematic diagram of the Weis-Fogh mechanism for wings of finite span in 
rectilinear motion. The instantaneous generation of the circulation I’ round each wing by 
the ‘fling’ process is necessarily accompanied as in position ( a )  by the generation of tip 
vorticity with the same total circulation round it, which then grows by the usual process 
of tip-vortex shedding as in position (b) .  

The problem of fitting the local, approximately two-dimensional motions 
studied in $4 2 and 3 into a fully three-dimensional model of the flow around real 
wings of finite span can be tackled by the classical methods of Prandtl (1918). 
We indicate this first in a case as close as possible to those studied by Prandtl, 
considering parallel straight wings of h i t e  span in rectilinear motion away from 
one another, which at each cross-section along the span takes the form illustrated 
in figure 1. 

Then the mechanism studied in $$ 2 and 3 for generating circulation around 
each wing cross-section works to produce bound vorticity of opposite signs on 
the two wings of figure 1: ‘into the paper’ on the left-hand wing and out from it 
on the right. The full three-dimensional pattern of vorticity must, however, be 
solenoidal: that is, the vortex lines must close up, which as in Prandtl’s theory 
requires the presence of tip vortices (figure 7). These must be generated simul- 
taneously with the circulations and be of sufficient strength to carry all the 
bound vorticity on the left-hand wing round through 180’ at the wing tips and 
back into the right-hand wing. 

The flow near the wing tips as the circulation and this associated tip vorticity 
are being formed can be inferred from the directions of the tip vorticity vectors 
in figure 7 (a)  as a flow inboard from the tips in the region above the wings, and 
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a corresponding flow outboard to the tips in the region below them. The flow 
inboard can be regarded in the early stages of the ‘fling’ motion as a spanwise 
inflow into the opening gaps. Of course, the opening of mid-span wing sections 
can suck in air most readily in the plane of those sections as in figure 5; near the 
tips, however, the sucking can produce significant inboard motion that represents 
part of the local flow pattern associated with the generation of tip vortices. 

Figure 7 ( b )  shows as the wings move apart the equal and opposite bound 
vorticity on each joined continually by tip vortices so as to keep the whole 
vorticity field solenoidal. They become longer by the usual mechanism that 
causes lifting wings to shed tip vorticity: pressure excess on the lower surface 
pushes fluid outboard near the tips, while pressure defects on the upper surface 
suck fluid inboard, to generate flow twist near the tips about the wing’s direction 
of motion. I n  the meantime the fluid impulse downward, which is the moment of 
the distribution of horizontal vorticity (for example, circulation times area in 
the use of a single closed line vortex), has a constant rate of increase, generating 
by reaction a constant lift. 

The three-dimensional flow pattern of figure 7 can be expected to modify in 
some degree the two-dimensional motions around mid-span sections through 
essentially the same mechanism as in Prandtl’s theory: the effective motion of 
each section is not through ‘otherwise undisturbed’ fluid, but through fluid 
subjected to a ‘downdraught’ or ‘downwash’ induced by the full three- 
dimensional pattern of vorticity. As a result, each wing section possesses an 
effective angle of incidence less than its geometric angle of incidence by an amount 
equal to  the ratio of downwash to wing speed. 

Such a downwash correction, indeed, in unsteady aerodynamic problems 
(including the problem of this paper), is present even when they are treated two- 
dimensionally: for example, the Wagner effect can be thought of as due in part 
to reduction of the effective angle of incidence through downwash induced by the 
starting vortex. The Weis-Fogh mechanism involves a similar reduction, as 
remarked in a footnote at the end of 3 3, because each wings moves in the down- 
wash field of the other wing’s bound vorticity. There is, however, no resulting 
loss of lift in this latter case, since the circulation about the wing section has been 
fixed independently by the ‘fling’ motion. The reduction means only that rela- 
tively high geometric angles of incidence (for example, 30” according to figure 1) 
are appropriate as the wings first move apart (and are achievable without the 
wings stalling). Note, furthermore, that the three-dimensional vortex pattern of 
figure 7 ,  acting together perhaps with some vorticity generated in earlier wing 
beats, somewhat increases the induced downdraught a t  each wing section above 
the value suggested on two-dimensional flow theory. 

The wings of Encarsia formosa, of course, do not adopt the simple rectilinear 
motion of figure 7:  their tips describe, as explained in $ 1 ,  a circular path around 
the erect body. This must bring into being a tip vortex in the form of a growing 
circular arc to close the vortex lines. This important consequence of the circula- 
tion set up round the wings is shown in figure 8 together with the ‘inboard vortex’: 
a much shorter circular-arc vortex close to the body, required to close the vortex 
lines in that region. Figure 8 shows a linear growth in the area enclosed by vortex 
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FIGURE 8. Schematic diagram of the outboard and inboard circular-arc tip vortices in the 
hovering Aight of an insect moving its wings in a horizontal circle about its erect body. 

lines and hence in the downward impulse of the vorticity distribution, corre- 
sponding to a constant lift as before. I ts  value is independent of induced down- 
wash effects, which again influence only the local angles of incidence. 

It is arguable that the fullest possible utilization of the Weis-Fogh mechanism 
would be one in which the animal could continue the movement of both wing tips 
circumferentially as in figure 8, but through the total angle of 180”, making the 
full ‘ clap and fling ’ motion twice per beat instead of once as in Encarsia formosa. 
Then when the circular-arc tip vortex of figure 8 had grown into a complete 
downward-moving vortex ring the ‘clap ’ would take place and blow the loose 
ends downwards clear of the body,? to level up the whole vortex ring (whose 
diametrically opposite side had begun its descent earlier). Then another ‘ fiing ’ 
would occur, generating new circulation of opposite sign around the wings, which 
as they moved back in the opposite direction would create a further complete 
vortex ring of the same sign as before. 

This picture of an ‘ideal ’ utilization of the Weis-Fogh mechanism leading to 
the support of an animal’s weight by momentum generation in the form of 
a sequence of downward-moving circular vortex rings, two per wing beat, is of 
some theoretical interest because the circular shape of vortex line carries the 
greatest possible momentum (proportional to the area enclosed) per unit kinetic 
energy. We may note incidentally that, far below the animal, viscous dissipation 
of energy flux without change of momentum flux would gradually convert that 
motion into the classical ‘laminar round jet’ solution of the equations of motion 
(Landau 1944; Squire 1951) corresponding to  the action of a point source of 
momentum in a viscous fluid. Indeed, the flow field far below any small enough 
hovering animal of mass rn must take the form of this similarity solution, 
depending on just one parameter: the ratio between the force mg with which the 
animal acts on the fluid and the quantity pv2 of the same dimensions formed from 
the fluid’s density p and kinematic viscosity v. The ratio (a sort of Reynolds 

t Note that the air motion during the ‘clap’ is not the reverse of that during the ‘fling’: 
evidently, the outflow from the closing gap, far from being an irrotational source-type 
motion (the reverse of the sink-type motion of figure 5 )  is a separated efflux in the form of 
a downward-pointing jet. 
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FIGURE 9. Streamlines in the far flow field due to the delivery by Encarsia formosa of down- 
ward momentum mg per unit time at the marked position to air of kinematic viscosity v 
and density p, where rng/pv2 = 900. Streamlines are plotted a t  equal intervals of Stokes’s 
stream function. 

number squared) is around 900 for Encarsia formosa (with m = 0.025 mg) : quite 
small enough for the associated downward jet-type far-field flow (see figure 9) to 
be extremely stable. 

Encarsia, admittedly, is not able to move its wings through the full angle of 
180” so as to perform a true ‘clap and fling’ twice (as suggested in the last para- 
graph but one) per beat: they can move, in fact, through only about 130”. Subject 
to this limitation, however, it can be argued that its motions approximate as 
closely as is feasible to those described above. It does a complete ‘clap and fling’ 
a t  one extreme of every wing beat, and makes at the other extreme a broadly 
similar ‘flip’ motion (with the same total magnitude of wing angular movement), 
harder to analyse and without bringing the two wings together. Quite possibly 
the combination may give advantages not too far from what the ‘ideal’ motion 
would achieve ! 
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